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Abstract: Security protocols and encryption algorithms are essentially based on algorithms and on Random Number
Generators (RNG). In this paper, we described a single key cryptographic system based on Programmable Cellular Automata
Generator (PCAG) and Stream Generators. e proposed reconfigurabl e architecture of PCAG The hardware implementations
of PCAG and two representative stream generators are compared in terms of performance and consumed area. The ciphers
used for the comparison are the A5/1 and W7. The designs were coded using VHDL language. For the hardware
implementation of the designs, on a reconfigurable hardware platform Virtex Il 2V250FG256 FPGA device was used. The
implementation results illustrate the hardware performance of each generator in terms of throughput-to-area ratio. This

ratio equalsto: 9.78 for the A5/1, 2.72 for the PCA and 2.35 for the W7.
Keywords: Cellular automata, Sream ciphers, A5/1 generator, W7 generator and VLS| implementation

1. INTRODUCTION

Random number generatorsplay an important rolein several
computational fields, including Monte Carlo techniques,
cryptographic protocols, and stochastic optimization
methods [2]. With the advent of massively paralld scientific
computation, the generation of pseudorandom numbers has
become essential.

Random number generators must possess a number of
propertiesif they arefor cryptographic application. The most
important propertiesfrom this point of view are good results
on standard statistical tests of randomness, computational
efficiency, along period, and reproducibility of the sequence.

There exist many methods for generating random
numbers on acomputer, the most popul ar onebeing thelinear
congruential generators. Linear congruential generatorsare
based on thefollowing recurrent formula:

X peq = (@X,, + c)modm (2)

When a, ¢ and m are integers. With n > 0, m > 0 and
O<a<m

Thevaluem> Oiscalled themodulus, aisthe multiplier,
and cisan additive constant. Ref. [5] describesin great detail
how to pick suitable values for these parameters. The
sequence clearly has amaximum possible period of m. The
linear congruential generators are very popular among
researchers and most mathematical software packages.

So-called lagged-Fibonacci generators are also widely
used. They are of theform:

Xn = (Xn—r op X”*D)mOdm (2)

Theinteger’snumbersr and p are called lags and there
are several methods for choosing them appropriately (see
[5]). The operator op can be one of the following binary
operators: addition, subtraction, multiplication, or exclusive
or.

However, it should be noted that from the point of view
of hardware implementation both congruential and lagged-
Fibonacci RNGs are not very suitable; they are inefficient
in terms of area occupation and execution time when applied
tofine-grained massively paralld machines, for built-in self-
test, or for other on-board applications.

A third widespread type of generator is the so-called
Linear Feedback Shift Register (LFSR) generators. A pseudo
random sequence is generated by the linear recursion
equation:

Xn =(C1Xn71+C2Xn72 +...+Can7k)mOd2. (3)

With C,Cy...,.c,arein{0,1}

Linear feedback shift registers are popular generators
among physicissand computer engineers. Thereexist forms
of LFSRthat are suitable for hardwareimplementation. M.
D. Galanis[4] described a comparison of stream generator
based on LFSR (A5/1 and W7). Their results suggest that
A5/1 generator achieves the best hardware performance.
The throughput of W7 generator implementation is much
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better compared to the one that the A5/1 implementation
achieves.

Pseudorandom number generation by cellular automata
(CAS) hasbeen an activefield of research in thelast decade
[1], one of the underlying motivations stemming from the
advantages offered by CAswhen considered from aVLS
viewpoint: CAsaresimple, regular, locally interconnected,
and modular [2]. These characteristicsmakethem easier to
implement in hardwarethan other models, thusmaking CAs
an attractive choice for onboard applications. CAs have
tradionally been used toimplement RNGsin cryptographic
devices[3].

Onedimensional CAsRNG hasbeen extensvely sudied
inthepast [1, 4, 5]. These studies have shown convincingly
the suitability of CA-generated pseudorandom numbers and
their superiority with respect to other widely used methods.

In this paper, we described and implemented a single
key cryptographic system based on 1-D CA on a
reconfigurable hardware platform FPGA, and we compared
the architecture design and Hardware implementation of
1-D CA generator and stream generators (A5/1 and W7).

This paper is organized asfollows. In the next section
we summarize works done on CAs for random number
generation. Section 3 outlines description of two
representative stream generators based on LFSR, in section
4 we present a VLS| comparison of CA and LFSR, the
comparison of implementation resultsispresented in section
5. Finally in section 6, we offer some concluding remarks.

2. CELLULAR AUTOMATAAND THE GENERATION
OF RANDOM NUMBER

2.1 Preliminary Cellular Automata Theory

Cdlular automata (CAs) arediscrete dynamical systemsin
that space, timeand properties can have only afinite number
of states. A CA can be defined asa d-dimensional Euclidean
space (whered = 1, 2 or 3isused in practice), partitioned
into cellsof uniform size, each one embedding an identical
elementary automaton (ea). Input for each eaisgiven by the
states of the elementary automaton in the neighboring cells,
where neighbourhood conditions aredetermined by a pattern
invariant in time and constant over the cdlls. At the time
t=0, easarein arbitrary states and the CA evolves changing
the state of all eas at discrete times, according to a local
rule. Each cell intheregular spatial |atti ce can have any one
of afinitenumber of states. As mentioned before, the states
of the cells in the lattice are updated according to a local
rulecalled the state transition function. That is, the state of
acell at agiven time depends only on its own state in the
previous time step and the states of its nearby neighbors at
the previoustime step.

In this paper, we shall concentrateond = 1, i.e. one
dimensional grids. Theidentical rule contained in each cell
is essentially afinite state machine, usually specified in the
formof "arrule table; with anentry for every possible
neighbourhood configuration of states.
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2.2 Onedimensional CAs

A 1-Dbinary CA isan array of cdls(registers) [q,(t), g,(1), ...,
g,()] where each cell’s state g {0, 1} and i [0, n] is any of
its permissible state [6]. At each discrete time step (clock
cycle) , each cell of the CA updatesitsstate using atransition
rule based on a Boolean function. Applied to the current
states of each cell’sstate transition neighborhood g(t + 1) =
f (9,(1), g,(t),...). The conventional nearest three-cell state
transition neighborhood, having aradiusr = 1, consists of
itself g and its left/right most neighbors q,_/q,,, Cellular
automata can beuniform, with the same set of statetransition
nei ghbor hood/rules areused for each cell, or hybrid, where
each cell can use adifferent set.

Wolfram [10] first proposed CA as Pseudo-random
Number Generator (PNG). He has used uniform, 1D CAs
with r =1, and rule 30, Hortensius et al. [ 7] and Nandi et al.
[8] used nonuniform CAswith two rules 90 and 150, and it
was found that the quality of generated Pseudo Number
Seqguences (PNSs) wasbetter than the quality of theWolfram
system. Recently Tomassini and Perrenoud [9] proposed to
use nonuniform, 1D with r = 1 and four rules 90, 105, 150
and 165, which provide high quality PNSs and huge space
of possible secret keyswhich isdifficult for cryptanalysis.

The CA which is characterized by arule 90 specifiesan
evolution from neighborhood configuration to the next state
as follows:

Q.,QQ.,( 111 110 101 100 011 010 001 000
Q(t+1) 0 1 0 1 1 0 1 0
Decimal 90 (Rule 90)

Infig. 1 wepresent afive-bit Uniform Cdlular Automata
(UCA) implemented in hardware with the rule 90, the next
state of the ith cell depends on the present states of its|eft
and right neighbors.

A ! }

Figure 1: Five-bit UCA 90 Implemented in Hardware

The rules 90, 105, 150 and 165 are respectively
characterized by these Boolean equations:

* Rule30:x (t+1)=x_(t) ®[x(t) ORx,, (1]

* Rule90:x(t+1)=x_(t) ®x,,(1).

* Rulel05:x (t+1)=x (t) & [x_,() ®x_,(1)].

* Rulel50: x (t+1)=x_(t) ®x(t) ®x,,(1).

* Rulel65:x (t+1)=x_(t) & X,,(0).

Where ® and g arerespectively the exclusive and not
exclusive OR function.
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Ifina CA thesameruleisappliedtoall cdls, then the
CA is called uniform one (figure 1); otherwise the CA is
called hybrid CA (figure 2). For rule 150 the next state of
theith cell dependson the present states of its left and right
neighbors and on its own present state.
LDH}i
PCello

\\Di-ﬂ \\Di $
DCell2 BCelll

CLK

t¢
pCell3

Qi-2 | Qi—ll Qi Qi+1|
I 5
GND
Rule 102 Rule 150 Rule 90 Rule 150

Figure 2: Hybrid Cellular Automata

The CA is characterized by XOR and/or XNOR
dependence is called an additive CA. If in a CA the
nei ghbourhood dependenceis XOR, then it iscalled anon
complemented CA and the corresponding ruleisreferred to
as a non complemented rule [11]. For neighbourhood
dependence of XNOR, the CA is called a complemented
CA. The corresponding ruleinvol ving the EXNOR function
isacomplemented CA, single or multiple cellsmay employ
acomplemented rulewith XNOR function.

Programmable CA (PCA) is a structure where the
combination logic (CL) of each cell is not fixed but it's
controlled by anumber of control signalssuch that different
rules can berealized on the same structure.

From left 1

From right

From right

Figure 3: A 3-neighborhood PCA with aNon Complemented Additive
Rule (A) and with a Complemented Additive Rule (B)
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In figure 3 we present a standard 3-neighbrhood with
complemented and non-complemented additive rules.

Table 1
PCA Rules

Control Signals Non complted Complemented

Sgnals Rules Rules
s s S
0 0 1 Xg not (X)
0 1 0 Xe not (X.)
0 1 1 X.® Xy Xo® Xy
1 0 0 X, not (X,)
1 0 1 X, @ X, X, & Xy
1 1 0 X, @ X, Xe® X¢
1 1 1 X, @ X .® X, X 8 X Xp)

Using such acell structure like those shown in figure 3,
all possibleadditive rules can be achieved. The combinations
of the control signals of §, S., S, and the corresponding
rulesarelistedin Tablel, where X, isthe value of theright
neighbor, X is the value of the left neighbour and X_
representsthe value of thecell.

In the following section we present the reconfigurable
architecture of the RNG based on Programmable Cellular
Automata (PCA).

2.3 ReconfigurableAr chitecture of the PCA Gener ator

In this Section, we present areconfigurable architecture of
RNG, which is capable of implementing all PCA rules for
3-neighborhood. Since rules selections are commonly
described as 4-hit words, the selected rules refer to thelocal
rules and types of run, where it is possible to change the
rule during the evol ution.

Thisarchitecture consists of:

*  FIFOfor storing theinitial state

* A Control Unit

* A 1-DPCAwith 128 cdlsfor generating the stream
sequence number.

* A 128 hitsmemory for storing the current state of
CA (key).

* A control signals is composed by four bits (.R(i),
where0 <i < 3). Thebit 0 of rules (R(0)) indicates
complemented (R(0) = 0) from non complemented
(R(0) = 1) additive rules. The genome of acdl is
given by the 3-bit string (R(0), R(1) and R(3)) LCR.
WhereL (Left), C (Center) and R(Right).

* APaald/ Seria Converter for the output sequence
number.

The PCA generatesdifferent stream key. Thegeneration
of therandom numbersis synchronous with the main clock
signal (CLK). Figure 4 shows our proposed architecture of
RNG based on PAC.
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Figure 4: Our Proposed Architecture of PCA RNG

The length of a CA’s state cycle is very important in
determining thesuitability of the CA asagenerator of random
number [2]. Ideally, an arbitrary n-cell CA RNG should have
amaximum cyclelength about 2n-1.

2.3 Test Reaults

The random number sequences produced by the CA as
described above are coded in hexadecimal form. We used
two tests: the DIEHARD and the NIST Test Suites values.
These two tests were performed on files of 10 Mega hits.
The tests are only briefly described herein since the
corresponding programs and documentation are freely
available on theweb [14].

Table 2 showsthat DIEHARD testsresults of our PCA
generator. In thistablethree CAsfor thelength 128 bitswith
different rules and the same genome are presented.

According to table 2, high statistical quality of the
random sequencesisgenerated by the PCAG. Nevertheless,
the quality of the random sequences dependson thetranstion
function (rule).

Table 2
Diehard Tests Results
Test name CAl CA2 CA3
Birthday spacing Pass Pass Pass
Overlapping permu Fail Pass Pass
Binary rank 31*31 Pass Pass Pass
Binary rank 32* 32 Pass Pass Pass
Binary rank 6*8 Pass Pass Pass
COUNT-THE-1 Pass Fail Pass
Parking lot Pass Pass Pass
Minimum distance Pass Pass Pass
3D sphere Pass Pass Pass
the SQUEEZE Pass Fail Pass
Overlapping sum Pass Pass Pass
Runup 1 Pass Pass Pass
Runup 2 Pass Pass Pass
Run down 1 Pass Pass Pass
Run down 2 Pass Pass Pass
Craps.of throws Pass Pass Pass
Craps of wins Pass Pass Pass
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In the next section we described two types of stream
generators based on LFSR.

3. STREAM GENERATORS

3.1 A5/1 Gener ator

The A5/1 generator is composed by three linear feedback
shift register (LFSR); R1, R2 and R3 of lengths 19, 22 and
23, respectively. All of these registers have primitive
feedback polynomials and each register is updated according
to its own feedback polynomial.

CLK3

y R3 7

Figure 4: The A5/1 Sream Generator

The taps of R1 are at the bit positions 13, 16, 17, 18;
the taps of R2 areat thebit positions 20, 21; and the taps of
R3 are at hit positions 7, 20, 21, 22. These registers are
maximal length LFSRswith periods 2° -1, 222 - 1, and 2%
—1 one respectively. The output of A5/1 is produced by
XOR’ing the most significant bit (MSB)of each register as
shown inFig. 4.

Each LFSR hasasingleclocking tap in bit 8 for R1, bit
10 for R2 and R3. Clocking mechanism of each LFSR is
determined according to the majority rule: Each clock cycle
majority of CLK1, CLK2, and CLK3 iscalculated. Two or
three registers whaose clocking tap value isthe same as the
majority bit are clocked. Since at each clock cycle at least
two LFSRs are clocked, an individual LFSR moves with
probability 3/4 and stops with probability 1/4.

3.2 W7 Generator

TheW?7 generator isabyte-wide, synchronous stream ci pher
optimized for efficient hardware implementation at a very
high datarates. It is asymmetric key algorithm supporting
key lengths of 128 bits. W7 cipher contains eight similar
modelsor cellsM1, M2,..., M8. Each cdl consistsof three
LFSRs of lengths 38, 43 and 47, respectively. And one
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majority function [4]. Thethreeregistersaremaximal length
LFSRswith periods 2% -1, 2% — 1, and 2% -1, respectively.

The proposed architecture for the hardware
implementation of onecedl ispresented in Fig.5. The outputs
of each cell composed the key stream byte.
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Figure 5: The W7 Stream Generator

One bit in each register is designated as the clock tap
for that register, asitisshown in Fig. 5. At each clock cycle
the majority value for these taps determines which LFSRs
advance. Only the LFSR, whose clock taps agree with the
majority, advance. The output bit arises after a non-linear
function in the register which isa combination of several
bits in the LFSR, as presented in Fig. 5. The non-linear
function isa combination of thelogical-AND functions. The
actual key stream output istaken astheexclusive-OR of the
three LFSRs. Thekey stream byte isthe aggregation of each
cell output.

4. THEVLSI IMPLEMENTATION OF CA AND LFSRS

In the VLSl implementation [12], a signal path can be
modeled as a network which is consists of resistors and
capacitors (figure 6).

Sin Sout

Figure 6: Distributional Resistors and Capacitors Equivalence of
Signal Path in VLS|
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The delay time of signal is described by = :% (6)

Where | is the length of signal path, r is a resistance
and cisacapacitance.

Thedday timeof signa pathin VLSI meansthat length
of signal path becomes the principal issue in VLSI
implementation. We named it as the discipline of locality
[13], which meansthat shorter signal path will bring higher
speed than the longer signal path. Contrastingtothe LFSR,
the cellular automata havethe property of locality of signal
path, sothe cdlular automatahavemore potential advantages
in speed than LFSR in VLS| implementation.

In figure 7 we present the structure of cdlular automata
and LFSR. In which the D, is the D Hip-Flop, CL is a
combinational logical, while a isalogical of 0 or 1.

For the LFSR the stream output is S, Where
0<i<N-1

According to figure 7, theinformation processing speeds
is determined mainly by the length of the signal path [15].
With thelocality of signal path, the signal path length of the
CA isreated to the distance (d) of two flip-flops while the
signal path length of LFSR is related to the distance of N
flip-flops duetothe global signal path of LFSR. So the signal
path length ratio of the CA to the LFSR isgiven by:

_4 __1
(N-Dd  N-1 ()
Equation (7) denotesthat the signal path length of LFSR

is N-1 times of the signal length of cellular automata
appropriatdy. From (6), we obtained that:

Ica/h‘sr =

T (red?) /fre(N-2d)*) 1
fie | 2 2 (N2 (8)
So S SNa
A
g [y i
> > —>
D D D
CLK
(A)
CLK
Si
é—‘
D
B

Figure 7: The Structure of a Cellular Automata (A) and LFSR (B)
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Equation (8) denotes that the ratio of the information
processing speeds of cellular automata to LFSR is inverse

1
to the square of unit number as (N—1)?

cellular automata have more potential speeds advantages

than LFSRs when considerations principally focus on the
signal path length properties, especially in thelarge system.

. This means that

5. COMPARISON OF IMPLEMENTATION
RESULTS

We have prototyped thisthree architectures of RNGson an
FPGA device. There are implemented in VHDL language
with use of the ModelSim Simulator 6.2 and synthes zed
using Xilinx ISE™ Tools. Results have been synthesized
using a reconfigurable hardware platform Virtex 11
2V250FG256 FPGA.

Table 3
RNGs Per formance and Area Comparison
RNG Area Throughput Throughput/
(Slices) (Mbps) Area
PCA 715 1947.88 2.72
A5/1 40 391.38 9.78
w7 656 1545.00 2.35

The results of performance (in terms of throughput),
consumed area (CLB dlices) and Throughput to Area, for
theimplemented RNGs, are presented in Table 3.

The results for the throughput-to-area ratio for all
generators are graphically shown in Figure 8. The A5/1
achieves the best hardware performance.

12 4

10

Throughput / Area
(o2}

T
PCA A5/1 w7

Generator

Figure 8: Throughput to Area Ratio Results

The throughput of W7 implementation has the second
best throughput. It is much better compared to the A5/1
implementation, but this comes with an area cost. The
comparison resultsfor.the throughputfor al generators are
shown in Figure9.
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Figure 9: Throughput Results

Ascan benoticed, the cellular automata generator has
more potential speeds advantagesthan the stream generators.
In table 4 we present the comparison of our implementation
results for stream generators (W7 and A5/1) and the
implementation resultspublished in [4].

Table 4
Implementation Results Comparison

Gener ator Criteria Our Results [4] Results
Area (Slices) 40 32
A5/1 Throughput (Mbps) 391.38 188.3
Throughput/ Area 9.78 5.88
w7 Area (Slices) 656 608
Throughput (Mbps) 1545 768
Throughput/ Area 2.35 1.26

According to table 4, our proprietary implementation
of stream generator isfaster, it hasthe best throughput was
by about 1545Mbpsfor W7 and 391.38 Mbpsfor A5/1, and
the throughput-to-area ratio are 2.35 for W7 and 9.78 for
A5/1. Also, result of [4] hasthe best area 40 for A5/1 and
656 for W7.

To our knowledge there are no published hardware
implementationsresultsfor PCAG, which can be compared
with our respective implementations.

6. CONCLUSION SUMMARY

In this paper, we described the single key cryptographic
system based on PCA generator and stream generators. We
proposed reconfigurable architecture of PCA generator.
These generators are implemented in hardware and
compared in terms of performance and consumed FPGA
area. These ciphers were coded in VHDL language and
synthesized in an FPGA device. The PCA generator achieves
the largest throughput 1947.88 Mbps. The largest
throughput-to-area ratio has been achieved by the A5/1
cipher and is equal to 978 Mbps/slice. The proposed
architecture of PCA generator supportsvariable number of
cellsand variablesrules. Therefore we can generate along
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number sequence with long period compared to that of the
LFSRs generator, with agood statistical quality.
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