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Abstract: Security protocols and encryption algorithms are essentially based on algorithms and on Random Number
Generators (RNG). In this paper, we described a single key cryptographic system based on Programmable Cellular Automata
Generator (PCAG) and Stream Generators. We proposed reconfigurable architecture of PCAG. The hardware implementations
of PCAG and two representative stream generators are compared in terms of performance and consumed area. The ciphers
used for the comparison are the A5/1 and W7. The designs were coded using VHDL language. For the hardware
implementation of the designs, on a reconfigurable hardware platform Virtex II 2V250FG256 FPGA device was used. The
implementation results illustrate the hardware performance of each generator in terms of throughput-to-area ratio. This
ratio equals to: 9.78 for the A5/1, 2.72 for the PCA and 2.35 for the W7.
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1. INTRODUCTION

Random number generators play an important role in several
computational fields, including Monte Carlo techniques,
cryptographic protocols, and stochastic optimization
methods [2]. With the advent of massively parallel scientific
computation, the generation of pseudorandom numbers has
become essential.

Random number generators must possess a number of
properties if they are for cryptographic application. The most
important properties from this point of view are good results
on standard statistical tests of randomness, computational
efficiency, a long period, and reproducibility of the sequence.

There exist many methods for generating random
numbers on a computer, the most popular one being the linear
congruential generators. Linear congruential generators are
based on the following recurrent formula:

� � mcaXX nn mod1 ��� (1)

When a, c and m are integers. With n � 0, m > 0 and
0 < a < m.

The value m > 0 is called the modulus, a is the multiplier,
and c is an additive constant. Ref. [5] describes in great detail
how to pick suitable values for these parameters. The
sequence clearly has a maximum possible period of m. The
linear congruential generators are very popular among
researchers and most mathematical software packages.

So-called lagged-Fibonacci generators are also widely
used. They are of the form:

rnn XX �� ( op mX pn mod)� (2)

The integer’s numbers r and p are called lags and there
are several methods for choosing them appropriately (see
[5]). The operator op can be one of the following binary
operators: addition, subtraction, multiplication, or exclusive
or.

However, it should be noted that from the point of view
of hardware implementation both congruential and lagged-
Fibonacci RNGs are not very suitable; they are inefficient
in terms of area occupation and execution time when applied
to fine-grained massively parallel machines, for built-in self-
test, or for other on-board applications.

A third widespread type of generator is the so-called
Linear Feedback Shift Register (LFSR) generators. A pseudo
random sequence is generated by the linear recursion
equation:

.2mod)...( 2211 knknnn XcXcXcX ��� ���� (3)

With c
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are in {0,1}

Linear feedback shift registers are popular generators
among physicists and computer engineers. There exist forms
of LFSR that are suitable for hardware implementation. M.
D. Galanis [4] described a comparison of stream generator
based on LFSR (A5/1 and W7). Their results suggest that
A5/1 generator achieves the best hardware performance.
The throughput of W7 generator implementation is much
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better compared to the one that the A5/1 implementation
achieves.

Pseudorandom number generation by cellular automata
(CAs) has been an active field of research in the last decade
[1], one of the underlying motivations stemming from the
advantages offered by CAs when considered from a VLSI
viewpoint: CAs are simple, regular, locally interconnected,
and modular [2]. These characteristics make them easier to
implement in hardware than other models, thus making CAs
an attractive choice for onboard applications. CAs have
tradionally been used to implement RNGs in cryptographic
devices [3].

One dimensional CAs RNG has been extensively studied
in the past [1, 4, 5]. These studies have shown convincingly
the suitability of CA-generated pseudorandom numbers and
their superiority with respect to other widely used methods.

In this paper, we described and implemented a single
key cryptographic system based on 1-D CA on a
reconfigurable hardware platform FPGA, and we compared
the architecture design and Hardware implementation of
1-D CA generator and stream generators (A5/1 and W7).

This paper is organized as follows. In the next section
we summarize works done on CAs for random number
generation. Section 3 outlines description of two
representative stream generators based on LFSR, in section
4 we present a VLSI comparison of CA and LFSR, the
comparison of implementation results is presented in section
5. Finally in section 6, we offer some concluding remarks.

2. CELLULAR AUTOMATA AND THE GENERATION
OF RANDOM NUMBER

2.1 Preliminary Cellular Automata Theory

Cellular automata (CAs) are discrete dynamical systems in
that space, time and properties can have only a finite number
of states. A CA can be defined as a d-dimensional Euclidean
space (where d = 1, 2 or 3 is used in practice), partitioned
into cells of uniform size, each one embedding an identical
elementary automaton (ea). Input for each ea is given by the
states of the elementary automaton in the neighboring cells,
where neighbourhood conditions are determined by a pattern
invariant in time and constant over the cells. At the time
t = 0, eas are in arbitrary states and the CA evolves changing
the state of all eas at discrete times, according to a local
rule. Each cell in the regular spatial lattice can have any one
of a finite number of states. As mentioned before, the states
of the cells in the lattice are updated according to a local
rule called the state transition function. That is, the state of
a cell at a given time depends only on its own state in the
previous time step and the states of its nearby neighbors at
the previous time step.

In this paper, we shall concentrate on d = 1, i.e. one
dimensional grids. The identical rule contained in each cell
is essentially a finite state machine, usually specified in the
form of a rule table, with an entry for every possible
neighbourhood configuration of states.

2.2 One dimensional CAs

A 1-D binary CA is an array of cells (registers) [q
0
(t), q

1
(t),…,

q
n
(t)] where each cell’s state q

i 
{0, 1} and i [0, n] is any of

its permissible state [6]. At each discrete time step (clock
cycle) , each cell of the CA updates its state using a transition
rule based on a Boolean function. Applied to the current
states of each cell’s state transition neighborhood q

i
(t + 1) =

f
i
 (q

1
(t), q

2
(t),…). The conventional nearest three-cell state

transition neighborhood, having a radius r = 1, consists of
itself q

i
 and its left/right most neighbors q

i–1
/q

i+1
 Cellular

automata can be uniform, with the same set of state transition
neighborhood/rules are used for each cell, or hybrid, where
each cell can use a different set.

Wolfram [10] first proposed CA as Pseudo-random
Number Generator (PNG). He has used uniform, 1D CAs
with r = 1, and rule 30, Hortensius et al. [7] and Nandi et al.
[8] used nonuniform CAs with two rules 90 and 150, and it
was found that the quality of generated Pseudo Number
Sequences (PNSs) was better than the quality of the Wolfram
system. Recently Tomassini and Perrenoud [9] proposed to
use nonuniform, 1D with r = 1 and four rules 90, 105, 150
and 165, which provide high quality PNSs and huge space
of possible secret keys which is difficult for cryptanalysis.

The CA which is characterized by a rule 90 specifies an
evolution from neighborhood configuration to the next state
as follows:

Q
i-1

Q
i
Q

i+1
(t) 111 110 101 100 011 010 001 000

Q
i
(t+1) 0 1 0 1 1 0 1 0

Decimal 90 (Rule 90)

In fig. 1 we present a five-bit Uniform Cellular Automata
(UCA) implemented in hardware with the rule 90, the next
state of the ith cell depends on the present states of its left
and right neighbors.

Figure 1: Five-bit UCA 90 Implemented in Hardware
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The rules 90, 105, 150 and 165 are respectively
characterized by these Boolean equations:

• Rule 30 : x
i
 (t + 1) = x

i–1
(t) � [x

i 
(t) OR x

i+1
(t)].

• Rule 90 : x
i 
(t + 1) = x

i–1
(t) � x

i+1
(t).

• Rule 105: x
i
 (t + 1) = x

i
 (t)  [x

i–1
(t) � x

i+1
(t)].

• Rule 150: x
i
 (t + 1) = x

i–1
(t) � x

i 
(t) � x

i+1
(t).

• Rule 165: x
i
 (t + 1) = x

i–1
(t)  x

i+1
(t).

Where � and  are respectively the exclusive and not
exclusive OR function.
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If in a CA the same rule is applied to all cells, then the
CA is called uniform one (figure 1); otherwise the CA is
called hybrid CA (figure 2). For rule 150 the next state of
the ith cell depends on the present states of its left and right
neighbors and on its own present state.

In figure 3 we present a standard 3-neighbrhood with
complemented and non-complemented additive rules.

Table 1
PCA Rules

Control Signals Non complted Complemented
Signals Rules Rules

S
L

S
C

S
R

0 0 1 X
R

not (X
R
)

0 1 0 X
C

not (X
C
)

0 1 1 X
C 
� X

R
X

C 
 X

R

1 0 0 X
L

not (X
L
)

1 0 1 X
L 
� X

R
X

L 
 X

R

1 1 0 X
L 
��X

C
X

R 
 X

C

1 1 1 X
L 
� X

C 
� X

R
X

L 
 (X

C
 X

R
)

Using such a cell structure like those shown in figure 3,
all possible additive rules can be achieved. The combinations
of the control signals of S

L
, S

C
, S

R
 and the corresponding

rules are listed in Table1, where X
R
 is the value of the right

neighbor, X
L
 is the value of the left neighbour and X

C

represents the value of the cell.
In the following section we present the reconfigurable

architecture of the RNG based on Programmable Cellular
Automata (PCA).

2.3 Reconfigurable Architecture of the PCA Generator

In this Section, we present a reconfigurable architecture of
RNG, which is capable of implementing all PCA rules for
3-neighborhood. Since rules selections are commonly
described as 4-bit words, the selected rules refer to the local
rules and types of run, where it is possible to change the
rule during the evolution.

This architecture consists of:
• FIFO for storing the initial state

• A Control Unit
• A 1-D PCA with 128 cells for generating the stream

sequence number.
• A 128 bits memory for storing the current state of

CA (key).

• A control signals is composed by four bits (.R(i),
where 0 � i � 3). The bit 0 of rules (R(0)) indicates
complemented (R(0) = 0) from non complemented
(R(0) = 1) additive rules. The genome of a cell is
given by the 3-bit string (R(0), R(1) and R(3)) LCR.
Where L (Left), C (Center) and R (Right).

• A Parallel / Serial Converter for the output sequence
number.

The PCA generates different stream key. The generation
of the random numbers is synchronous with the main clock
signal (CLK). Figure 4 shows our proposed architecture of
RNG based on PAC.

Figure 2: Hybrid Cellular Automata
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The CA is characterized by XOR and/or XNOR
dependence is called an additive CA. If in a CA the
neighbourhood dependence is XOR, then it is called a non
complemented CA and the corresponding rule is referred to
as a non complemented rule [11]. For neighbourhood
dependence of XNOR, the CA is called a complemented
CA. The corresponding rule involving the EXNOR function
is a complemented CA, single or multiple cells may employ
a complemented rule with XNOR function.

Programmable CA (PCA) is a structure where the
combination logic (CL) of each cell is not fixed but it’s
controlled by a number of control signals such that different
rules can be realized on the same structure.
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Figure 3: A 3-neighborhood PCA with a Non Complemented Additive
Rule (A) and with a Complemented Additive Rule (B)
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The length of a CA’s state cycle is very important in
determining the suitability of the CA as a generator of random
number [2]. Ideally, an arbitrary n-cell CA RNG should have
a maximum cycle length about 2n-1.

2.3 Test Results

The random number sequences produced by the CA as
described above are coded in hexadecimal form. We used
two tests: the DIEHARD and the NIST Test Suites values.
These two tests were performed on files of 1O Mega bits.
The tests are only briefly described herein since the
corresponding programs and documentation are freely
available on the web [14].

Table 2 shows that DIEHARD tests results of our PCA
generator. In this table three CAs for the length 128 bits with
different rules and the same genome are presented.

According to table 2, high statistical quality of the
random sequences is generated by the PCAG. Nevertheless,
the quality of the random sequences depends on the transition
function (rule).

Table 2
Diehard Tests Results

Test name CA1 CA2 CA3

Birthday spacing Pass Pass Pass
Overlapping permu Fail Pass Pass
Binary rank 31*31 Pass Pass Pass
Binary rank 32*32 Pass Pass Pass
Binary rank 6*8 Pass Pass Pass
COUNT-THE-1 Pass Fail Pass
Parking lot Pass Pass Pass
Minimum distance Pass Pass Pass
3D sphere Pass Pass Pass
the SQUEEZE Pass Fail Pass
Overlapping sum Pass Pass Pass
Run up 1 Pass Pass Pass
Run up 2 Pass Pass Pass
Run down 1 Pass Pass Pass
Run down 2 Pass Pass Pass
Craps of throws Pass Pass Pass
Craps of wins Pass Pass Pass

In the next section we described two types of stream
generators based on LFSR.

3. STREAM GENERATORS

3.1 A5/1 Generator

The A5/1 generator is composed by three linear feedback
shift register (LFSR); R1, R2 and R3 of lengths 19, 22 and
23, respectively. All of these registers have primitive
feedback polynomials and each register is updated according
to its own feedback polynomial.

Figure 4: Our Proposed Architecture of PCA RNG
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Figure 4: The A5/1 Stream Generator

The taps of R1 are at the bit positions 13, 16, 17, 18;
the taps of R2 are at the bit positions 20, 21; and the taps of
R3 are at bit positions 7, 20, 21, 22. These registers are
maximal length LFSRs with periods 219 –1, 222 - 1, and 223

–1 one respectively. The output of A5/1 is produced by
XOR’ing the most significant bit (MSB)of each register as
shown in Fig. 4.

Each LFSR has a single clocking tap in bit 8 for R1, bit
10 for R2 and R3. Clocking mechanism of each LFSR is
determined according to the majority rule: Each clock cycle
majority of CLK1, CLK2, and CLK3 is calculated. Two or
three registers whose clocking tap value is the same as the
majority bit are clocked. Since at each clock cycle at least
two LFSRs are clocked, an individual LFSR moves with
probability 3/4 and stops with probability 1/4.

3.2 W7 Generator

The W7 generator is a byte-wide, synchronous stream cipher
optimized for efficient hardware implementation at a very
high data rates. It is a symmetric key algorithm supporting
key lengths of 128 bits. W7 cipher contains eight similar
models or cells M1, M2,…, M8. Each cell consists of three
LFSRs of lengths 38, 43 and 47, respectively. And one
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majority function [4]. The three registers are maximal length
LFSRs with periods 238 –1, 243 – 1, and 247 –1, respectively.

The proposed architecture for  the hardware
implementation of one cell is presented in Fig.5. The outputs
of each cell composed the key stream byte.

The delay time of signal is described by 
2

2rcl
��  (6)

Where l is the length of signal path, r is a resistance
and c is a capacitance.

The delay time of signal path in VLSI means that length
of signal path becomes the principal issue in VLSI
implementation. We named it as the discipline of locality
[13], which means that shorter signal path will bring higher
speed than the longer signal path. Contrasting to the LFSR,
the cellular automata have the property of locality of signal
path, so the cellular automata have more potential advantages
in speed than LFSR in VLSI implementation.

In figure 7 we present the structure of cellular automata
and LFSR. In which the D

i
 is the D Flip-Flop, CL is a

combinational logical, while a
i
 is a logical of 0 or 1.

For the LFSR the stream output is S
i
,  Where

0 � i � N – 1.
According to figure 7, the information processing speeds

is determined mainly by the length of the signal path [15].
With the locality of signal path, the signal path length of the
CA is related to the distance (d) of two flip-flops while the
signal path length of LFSR is related to the distance of N
flip-flops due to the global signal path of LFSR. So the signal
path length ratio of the CA to the LFSR is given by:

1

1

)1(/ �
�

�
�

NdN

d
l lfsrca (7)

Equation (7) denotes that the signal path length of LFSR
is N-1 times of the signal length of cellular automata
appropriately. From (6), we obtained that:
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�
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�
�

(8)

Figure 5: The W7 Stream Generator

One bit in each register is designated as the clock tap
for that register, as it is shown in Fig. 5. At each clock cycle
the majority value for these taps determines which LFSRs
advance. Only the LFSR, whose clock taps agree with the
majority, advance. The output bit arises after a non-linear
function in the register which is a combination of several
bits in the LFSR, as presented in Fig. 5. The non-linear
function is a combination of the logical-AND functions. The
actual key stream output is taken as the exclusive-OR of the
three LFSRs. The key stream byte is the aggregation of each
cell output.

4. THE VLSI IMPLEMENTATION OF CA AND LFSRS

In the VLSI implementation [12], a signal path can be
modeled as a network which is consists of resistors and
capacitors (figure 6).

Figure 6: Distributional Resistors and Capacitors Equivalence of
Signal Path in VLSI
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Figure 7: The Structure of a Cellular Automata (A) and LFSR (B)
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Equation (8) denotes that the ratio of the information
processing speeds of cellular automata to LFSR is inverse

to the square of unit number as � �21

1

�N . This means that

cellular automata have more potential speeds advantages
than LFSRs when considerations principally focus on the
signal path length properties, especially in the large system.

5. COMPARISON OF IMPLEMENTATION
RESULTS

We have prototyped this three architectures of RNGs on an
FPGA device. There are implemented in VHDL language
with use of the ModelSim Simulator 6.2 and synthesized
using Xilinx ISETM Tools. Results have been synthesized
using a reconfigurable hardware platform Virtex II
2V250FG256 FPGA.

Table 3
RNGs Performance and Area Comparison

RNG Area Throughput Throughput/
(Slices) (Mbps) Area

PCA 715 1947.88 2.72

A5/1 40 391.38 9.78

W7 656 1545.00 2.35

The results of performance (in terms of throughput),
consumed area (CLB slices) and Throughput to Area, for
the implemented RNGs, are presented in Table 3.

The results for the throughput-to-area ratio for all
generators are graphically shown in Figure 8. The A5/1
achieves the best hardware performance.

As can be noticed, the cellular automata generator has
more potential speeds advantages than the stream generators.
In table 4 we present the comparison of our implementation
results for stream generators (W7 and A5/1) and the
implementation results published in [4].

Table 4
Implementation Results Comparison

Generator Criteria Our Results [4] Results

Area (Slices) 40 32

A5/1 Throughput (Mbps) 391.38 188.3

Throughput/ Area 9.78 5.88

W7 Area (Slices) 656 608

Throughput (Mbps) 1545 768

Throughput/ Area 2.35 1.26

According to table 4, our proprietary implementation
of stream generator is faster, it has the best throughput was
by about 1545Mbps for W7 and 391.38 Mbps for A5/1, and
the throughput-to-area ratio are 2.35 for W7 and 9.78 for
A5/1. Also, result of [4] has the best area 40 for A5/1 and
656 for W7.

To our knowledge there are no published hardware
implementations results for PCAG, which can be compared
with our respective implementations.

6. CONCLUSION SUMMARY

In this paper, we described the single key cryptographic
system based on PCA generator and stream generators. We
proposed reconfigurable architecture of PCA generator.
These generators are implemented in hardware and
compared in terms of performance and consumed FPGA
area. These ciphers were coded in VHDL language and
synthesized in an FPGA device. The PCA generator achieves
the largest throughput 1947.88 Mbps. The largest
throughput-to-area ratio has been achieved by the A5/1
cipher and is equal to 978 Mbps/slice. The proposed
architecture of PCA generator supports variable number of
cells and variables rules. Therefore we can generate a long

Figure 8: Throughput to Area Ratio Results
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The throughput of W7 implementation has the second
best throughput. It is much better compared to the A5/1
implementation, but this comes with an area cost. The
comparison results for the throughput for all generators are
shown in Figure 9.

Figure 9: Throughput Results
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number sequence with long period compared to that of the
LFSRs generator, with a good statistical quality.
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